Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279850

RESUMO

Prior to the emergence of the Omicron variant, many cities in China had been able to maintain a "Zero-COVID" policy. They were able to achieve this without blanket city-wide lockdown and through widespread testing and an extensive set of nonpharmaceutical interventions (NPIs), such as mask wearing, contact tracing, and social distancing. We wanted to examine the effectiveness of such a policy in containing SARS-CoV-2 in the early stage of the pandemic. Therefore, we developed a fully stochastic, spatially structured, agent-based model of SARS-CoV-2 ancestral strain and reconstructed the Beijing Xinfadi outbreak through computational simulations. We found that screening for symptoms and among high-risk populations served as methods to discover cryptic community transmission in the early stage of the outbreak. Effective contact tracing could greatly reduce transmission. Targeted community lockdown and temporal mobility restriction could slow down the spatial spread of the virus, with much less of the population being affected. Population-wide mass testing could further improve the speed at which the outbreak is contained. Our analysis suggests that the containment of SARS-CoV-2 ancestral strains was certainly possible. Outbreak suppression and containment at the beginning of the pandemic, before the virus had the opportunity to undergo extensive adaptive evolution with increasing fitness in the human population, could be much more cost-effective in averting the overall pandemic disease burden and socioeconomic cost.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20200469

RESUMO

BackgroundCOVID-19 vaccine prioritization and allocation strategies that maximize health benefit through efficient use of limited resources are urgently needed. We aimed to provide global, regional, and national estimates of target population sizes for COVID-19 vaccination to inform country-specific immunization strategies on a global scale. MethodsBased on a previous study of international allocation for pandemic COVID-19 vaccines, we classified the entire world population into eleven priority groups. Information on priority groups was derived from a multi-pronged search of official websites, media sources and academic journal articles. The sizes of different priority groups were projected for 194 countries globally. ResultsOverall, the size of COVID-19 vaccine recipient population varied markedly by goals of the vaccination program and geography. The general population aged <60 years without any underlying condition accounts for the majority of the total population (5.2 billion people, 68%), followed by 2.3 billion individuals at risk of severe disease, and 246.9 million essential workers which are critical to maintaining a functional society. Differences in the demographic structure, presence of underlying conditions, and number of essential workers led to highly variable estimates of target populations both at the WHO region and country level. In particular, Europe has the highest share of essential workers (6.8%) and the highest share of individuals with underlying conditions (37.8%), two priority categories to maintain societal functions and reduce severe burden. In contrast, Africa has the highest share of healthy adults, school-age individuals, and infants (77.6%), which are the key groups to target to reduce community transmission. InterpretationThe sizeable distribution of target groups on a country and regional bases underlines the importance of equitable and efficient vaccine prioritization and allocation globally. The direct and indirect benefits of COVID-19 vaccination should be balanced by considering local differences in demography and health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...